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ABSTRllCT 

4 

The plasma resonances observed with the Alouette topside sounder sat-  

e l l i t e  occur a t  the  plasma frequency, f N ,  a t  multiples of t he  electron cy- 

clotron frequency, fH, and a t  the  frequency f T  = ( fN2  + fH2)'. 

sonances may be a t t r ibu ted  t o  e lec t ros ta t ic  osc i l la t ions  of the ionospheric 

electrons i n  the v i c in i ty  of the s a t e l l i t e .  The frequencies f N  and f H  cor- 

respond t o  osc i l la t ions  along the Earth 's  magnetic f i e l d ;  the frequencies 

f T  and the  harmonics of f H ,  t o  osci l la t ions across the f i e l d .  

of responses corresponding t o  intermediate angles i s  accounted f o r  by the 

greater  group veloci ty  of the  pertinent e l ec t ros t a t i c  waves. These carry 

the energy away more rapidly and thus prevent long enduring plasma osci l -  

l a t ions .  

mechanism, roughly accounts f o r  the observed re la t ive  strengths of the 

resonances. 

1 
These re- 

The absence 

The explanation presented, although it ignores the  excitation 

2 



. 1. Introduction 

Resonance e f fec ts  i n  the ionosphere were f i r s t  observed during rocket 

t e s t s  of the topside sounder technique [Knecht e t  a l . ,  1961; Knecht and 

Russell,  19621 and more recently with the Alouette topside sounder satel- 

l i t e  [Lockwood, 19631. 

Alouette ionograms as pers is tent  responses extending from the transmitter 

The resonances, shown i n  Figure 1, appear on the 

pulse a t  cer ta in  character is t ic  frequencies, often las t ing  for a few m i l -  

liseconds, 

the ident i f icat ion of the characterist ic frequencies was carried out by 

After ea r l i e r  work by Knecht e t  a l .  [ 19611 and Lockwood [1963], 

Calvert and Goe [ 19631 , who examined sequences of Alouette ionogrms. With 

the variation of the electron density and the geomagnetic f i e l d  along the 

orb i t ,  t h i s  served t o  f a c i l i t a t e  the dis t inct ion between resonances and t o  

expose instrumental responses. 

Calvert and Goe [l963], found that the resonances occurred a t  the fol-  

lowing frequencies: 

electron cyclotron frequency, fH; the frequency f T  = ( f N 2  + fH2)2, and i t s  

harmonic, 2fT.* Those a t  f N ,  fT, and low-order harmonics of fH are always 

observed. 

the electron plasma frequency, fN; multiples of the 
1 

The resonance a t  the fundamental of the cyclotron frequency i s  

much weaker than tha t  a t  the second o r  t h i r d  harmonic, and i s  not consis- 

t en t ly  observed. 

It was suggested by Calvert and Goe [1963] tha t  the two major reson- 

ances a t  f N  and fT r e su l t  from electrostat ic  osc i l la t ion  of the ionospheric 

* I n  order t o  avoid confusion between f N  and the f M  of Calvert and Goe 
[19631, the NASA Topside Sounder Working Group proposed the new notation 
f T  (T f o r  transverse). We have adopted t h i s  convention. 
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' , plasma along and across the Earth's magnetic field,  respectively. Lock- - 
wood [l963] interpreted the cyclotron harmonic resonances in terms of phase 

buncning of the electrons as they gyrate about the Earth's magnetic field 

lines. 

a similar excitation mechanism. 

7 

Johnson arid Nuttal [I9641 have elaborated on this and have proposed 
l 

This paper extends and unifies the explanation of the resonance phe- 

nomena. Here the entire set of observed resonances is attributed to elec- 

trostatic oscillations. 

properties, and the conditions for their persistence are considered. Fi- 

nally, a comparison with the Alouette observations is made. 

The nature of these oscillations, their dispersion 

2 .  Electrostatic Oscillations 

Electrostatic plasma oscillations, where the electrons of a plasma 

oscillate against the restoring electric force of charge separation, have 

been given a variety of other names. Among these are "electron-acoustic 

I waves , "longitudinal plasma oscillations, It "electron waves , "space-charge 
waves," or simply "plasma oscillations." 

minology, we must emphasize that the term "electrostatic oscillations ( o r  

waves)" will be used for those plasma oscillations where the electric field 

is in the direction of the wave normal and where the wave magnetic field 

may be neglected, 

tic approximation to Maxwell's equations. 

resonance effects have been observed with Alouette, the ions remain virtu- 

ally immobile and do not take part in the oscillations. 

In the face of such multiple ter- 

These oscillations may be treated using the electrosta- 

At the frequencies where the 

In this paper, previous work on electrostatic oscillations will be 
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I 
' adapted f o r  the special  conditions of the upper ionosphere, and the special  

effects  which occur there w i l l  be emphasized. I n  par t icular ,  the analysis 

of Landau [1946] and Bernstein [1958] will be used. 

Elec t ros ta t ic  osci l la t ions i n  a cold plasma were f i r s t  t rea ted  by 

Tonks and L- ir [1929]. They predicted standing-wave osci l la t ions of 

the electrons a t  the plasma frequency. Later treatments, including tha t  

of Bohm and Gross [1949], incorporated the e f fec ts  of random thermal mo- 

t ion  and arrived a t  the conclusion that slowly propagating waves would re- 

s u l t .  

i n  which the ions were assumed t o  be stationary, was developed from the 

Landau's [I9463 treatment of these waves fo r  a col l is ionless  plasma, 

l inear ized Boltzmann equation and Poisson's equation. Each spa t i a l  Fourier 

component of the i n i t i a l  perturbation i n  the dis t r ibut ion function was t reated 

separately. It was found appropriate t o  employ a complex frequency i n  the 

analysis,  the imaginary par t  of which indicates attenuation of the waves 

generated by the i n i t i a l  perturbation. This attenuation phenomenon, which 

operates even i n  the absence of coll isions (for  a Maxwellian velocity dis- 

t r ibu t ion) ,  i s  now known as "Landau damping ." 
Treatments including the effects of an aaibient magnetic f i e l d  have 

been advanced by a number of workers, including Gross [1951], Gordeyev 

[1952], and Bernstein [ 19581. Bernstein's approach, apart from i t s  use of 

the full Maxwell equations rather than the equations of e lec t ros ta t ics ,  i s  

similar t o  t ha t  of Landau. 

throughout t h i s  paper, and neglecting ion motions, Bernstein's resu l t s  

I n  the e lec t ros ta t ic  l i m i t ,  which i s  used 

show t h a t  Landau's conclusions are considerably modified fo r  osci l la t ions 

which are  not s t r i c t l y  along the magnetic f i e l d .  

5 



L 

I n  Bernstein's analysis, an i n i t i a l  perturbation of the plasma can 

lead t o  two types of waves ( i f  the motion of ions i s  neglected) which may 

usually be distinguished by t h e i r  different phase veloci t ies .  

tromagnetic waves t r ave l  a t  velocit ies comparable t o  that of l i gh t ;  the 

e lec t ros ta t ic  waves, a t  veloci t ies  comparable t o  the thermal velocity of 

electrons. 

neglected. 

use an in f in i t e  velocity of l i gh t  i n  Maxwell's equations, or ,  what i s  equiv- 

alent,  employ Poisson's equation and assume tha t  the e l ec t r i c  f i e l d  of the 

wave may be derived from a potential .  

the  present paper t o  en t i re ly  exclude electromagnetic waves from consider- 

ation. 

The elec- 

I n  the treatment of the former, thermal motions can usually be 

I n  the treatment of the l a t t e r ,  it i s  usually permissible t o  

This procedure w i l l  be followed i n  

The va l id i ty  of the procedure w i l l  then be c r i t i c a l l y  examined. 

3. Dispersion i n  the Absence of a Magnetic Field 

It was  shown by Landau [1946] that each spa t i a l  Fourier component of 

an i n i t i a l  perturbation of the plasma electrons generates a longitudinal 

e l ec t ros t a t i c  wave of the form exp(st - i& . I-), where s = i w  - CY, and 

where u) i s  the angular frequency, Q, i s  a damping constant ( the reciprocal 

of a time constant), and k = 

lengths, A, long re la t ive  t o  the Debye length, h, (hk << l), the approxi- 

mate values of the components of s are: 

i s  the propagation vector. For wave- - 

1 
UI = ~ ( 1  + 3h2P)' M ~ ( 1  + $ h 2 9 )  

1 
CY = ~(1- r /8 )%-~k-~  exp(-*h -2 k -2 ) 



c 

1 . where 9 = (Ne2/c0m)% i s  the electron plasma frequency and h = (eokT/Ne2)* 

i s  the Debye length. 

Equation 1 i s  the dispersion relat ion f o r  e lec t ros ta t ic  waves. It i s  

the same as that f o r  electromagnetic waves i n  the plasma, except that the 
I 

velocity of l i g h t  i s  replaced by 3-%, which i s  the velocity of electrons 

of average thermal kinet ic  energy. The phase velocity of the waves i s  

v cy %/k (3) 

and the group velocity i s  

u = aco/ak- 3h2% (4) 

For long wavelengths (hk << 1) the phase velocity i s  therefore higher, 
1 

and the group velocity i s  lower, by approximately the same factor 3-H(hk)’1, 

than the velocity 3-%~ of electrons of average thermal energy. 
1 

The time constant of Landau damping, from equation 2 i s  

1 
TL = ( 8 / ~ r ) ~  h3k3q01 exp(T1h02k-”) ( 5 )  

It should be noted tha t  t h i s  time constant i s  extremely sensit ive t o  

the value of hk. 

typ ica l ly  about lo7 radians/second, hk = 0.1 corresponds t o  TL - Id2 sec; 

hk = 0.2 to TL - 4 X loo4 sec. 

f o r  values of k l e s s  than 0.l .h-l .  

For example, in  ionospheric applications, where UQ i s  

Landau damping i s  therefore insignif icant  



4. Relaxation of the Oscillations in the Absence of a Magnetic Field 

The presence of received signals at certain frequencies for many m i l -  

liseconds after the transmitter pulse must be caused by slowly decaying 

oscillations of the medium in the vicinity of the satellite. 

persistence of the oscillations shows that they are weakly- coupled to the 

antenna circuit and therefore probably occur mainly in the uniform medium 

outside the ion sheath. 

they probably are not caused by the presence of some special boundary con- 

ditions or irregularities in the medium. It seems therefore reasonable to 

look for the conditions under which oscillations of limited spatial extent 

and of long duration can occur in a uniform medium. 

be derived in this paper; they appear to be necessary for the occurrence 

of the resonant effects observed with Alouette. 

The long 

Since the resonances are observed consistently, 

Such conditions will 

In reality, the medium is bounded by the antenna, the body of the 

spacecraft, and the ion sheath around them. The problem of coupling be- 

tween the antenna and the medium during transmission and reception will 

not be discussed, and therefore no f u l l y  quantitative predictions will be 

made in this paper about the absolute amplitude of the resonances. 

Oscillations of limited spatial extent can be considered as a wave 

packet formed from a spectrum of waves with different propagation vectors 

k. 

mined by the width of the spectrum of spatial Fourier components. If the 

width of the wave number spectrum Ak is of the order of k at the center of 

the spectrum, then the smallest spatial extent of a wave packet formed from 

such waves is about 2n/k. 

The smallest possible size of the wave packet will be roughly deter- - 

Since the direction of the group velocity is 
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, t ha t  of &, such a wave packet w i l l  not propagate i n  a single direction but 

ra ther  w i l l  spread i n  a l l  directions.  It i s  reasonable t o  assume tha t  the 

spreading w i l l  be controlled by the magnitude of the group velocity. Sub- 

s t a n t i a l  spread w i 7 1  occur f o r  times greater than the time TG obtained by 

dividing the size of the wave packet &/k by the group velocity u. 

e lec t ros ta t ic  waves i n  the absence of a niagnetic f i e l d  

For 

where the value of u from equation 4 has been substituted. 

ent t o  express TG i n  terms of the number T of wave periods &/w. 

t i a l  spreading w i l l  therefore occur a f te r  

It i s  conveni- 

Substan- 

periods where v = cu/k i s  the phase velocity. 

f o r  the r e s t  of the paper as a measure of the time scale of the osci l la-  

t ions.  For e lec t ros ta t ic  waves i n  the absence of a magnetic f i e l d  the com- 

bination of equations 6 and 7 yields 

This parameter w i l l  be used 

Equation 7 indicates tha t  oscil lations of l imited spa t i a l  extent and 

of long duration occur i f  the phase velocity i s  much larger  than the group 

veloci ty .  I n  the special  case of e lectrostat ic  waves i n  the absence of a 
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magnetic field, this condition is satisfied according to equation 8 if hk 

is much smaller than unity. It may be easily ascertained that for hk < 

0.1 the time TG given by (6) is much smaller than the time TL given by (5). 

The persistence of the oscillations is thus determined almost entirely by 

dispersion and the decay caused by Landau damping is insignificant. 

5. Dispersion in the Presence of a Magnetic Field 

The starting point here is Bernstein's [1958] equation 40, which re- 

lates the complex angular frequency, -is, to the propagation vector, - k. 
It was derived from the collisionless, linearized Boltzmann equation and 

Maxwell's equations. It involves the approximation that the velocity of 

light and the mass of the ions are infinitely large. It thus pertains 

only to electrostatic oscillations of the electrons. 

persion equation, which corresponds to equations 1 and 2 of the previous 

This (complex) dis- 

section, is 

W 

1 + h2k? = iqwH exp(-K?p2sin28) 1 Im(l?p2sin20) . 

(9) 
exp[-$q2k?pZcos20t2 - i%(q -t m) tJ 1 dt , 

where Im is the modified Bessel mction, 0 is the angle between k and the 

magnetic field, m is an integer, % is the electron cyclotron frequency, 

w + 
p = qNh is the cyclotron radius of electrons of average kinetic energy. 

= -is is the complex angular frequency, q = -ks/q, Q = ON/%, and 

The integrals in equation 9 may be transformed by the identity 

10 



1 "/b t 2  m - is exp(+b2t2 - i a t )  d t  = b-' exp(-a2/b2)(in2 + 2 e d t )  (10) 
0 0 

1 - 
where a = w ( q  + m) and b = 2 2 k p q  cosf3. 

9 i s  r e a l  except f o r  the factor  q which multiplies the sum. 

phase angle of q w i l l  be the complement of t ha t  of the sum, and i s  con- 

t ro l l ed  by the integrals  (10). 

which corresponds t o  weak Landau damping, i s  tha t  the in tegra l  on the 

Notice tha t  the r e s t  of equation 

Thus the 

The condition f o r  a small phase angle, 

r igh t  of equation 10 dominate the in2 imaginary term. 

must be much larger than about 0.7 in  absolute value. 

condition f o r  weak Landau damping i s  

I n  other words, a/b 

This means tha t  the 

f o r  a l l  m. 

damped. 

wavelength i s  suff ic ient ly  long ( k p  << l), provided tha t  the frequency i s  

not close t o  a multiple of the cyclotron frequency (q + m # 0) .  

case of in te res t  here, where condition (11) i s  met, we may discard the im- 

Waves perpendicular t o  the magnetic f i e l d  (9  = n/2) w i l l  be un- 

Those a t  other angles w i l l  suffer only weak Landau damping i f  the 

I n  the 

aginary term on 

Equation 9 then 

the r ight  of equation 10 and confine ourselves t o  r e a l  q. 

takes the form 

m 
1 

k 2 p 2  = 2q(kpc0s9)'~ exp(-k2p'sin2f3) 1 Im(k?p2sin29) 
m = -m 

1 1  
Y 
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. I n  order t o  study the solutions of (12) f o r  small values of kp it i s  con- 

venient t o  expand th i s  dispersion equation i n  powers of kp, using the fo l -  

lowing formulas: 

U v = o  
CD 

The former i s  an asymptotic expansion [Fried and Conte, 19611 and the lat-  

t e r  i s  the Taylor se r ies  f o r  the modified Bessel f'unction [Watson, 19481. 

If only f i rs t  and second order terms in  @p2 are retained i n  the expansion 

of (12) then the approximate dispersion equation i s  

273   COS^^ - 3q2 + "1 + 2 P  L q4 ] (15) 
sin2 e cos2 e ( 6q4 

q2h2  - 

I f  the p p 2  term i s  neglected altogether then a quadratic equation i n  q i s  

obtained whose solution i s  

This condition i s  ident ica l  t o  the well-known condition X = (1 - Y") / (1  - 
Y L ~ )  [Ratcl i f fe ,  19591 fo r  the inf in i ty  of the refract ive index of elec- 

tromagnetic waves i n  a plasma. The frequencies given by (16) are  usually 

12 



0 called resonant 

as functions of 

the values of q 

frequencies [Spitzer, 19621. 

0 for different values of %. 

for 0 = 0 and 8 = n/2 are actually observed in Alouette 

They are shown by Figure 2 

It is to be noted that only 

records; these are q = 1, q = Q (or f = fH, f = fN) for 8 = 0 ;  and q = 

(1 + q;)’ (or f = fT) for 0 = n/2. The theoretical explanation of the 

absence of resonant frequencies which could be attributed to other angles 

is discussed in the following section. 

1 

In the special case of 8 = n/2, equation 16 does not represent the 

only solutions for small values of k p .  

dicate all the additional solutions for 8 = n/2, its solution 

Although equation 15 does not in- 

results in two values for q. For small values of kp, one of these approaches 

(qN2 + l)’, which is one of the solutions noted above. The other solution 

approaches 2 and thus represents a frequency close to the second harmonic 

of the electron cyclotron frequency. Examination of the f u l l  equation 12 

with 0 = n/2 shows that similar solutions also exist near all the other 

harmonics of the cyclotron frequency. These w i l l  be discussed in more de- 

tail in the following section. 

The results of the present section are that the solutions of the dis- 

persion equation for small values of kp, for 0 = 0 and 0 = n/2, coincide 

approximately with the frequencies of the resonances observed with the 

Alouette satellite. The decay time of these 

the absence of observations corresponding to 

resonances and the reason for 

solutions of the dispersion 



. equation for intermediate angles are discussed in the following section. 

6 .  Relaxation of the Oscillations in the Presence of a Magnetic Field 

Conditions for the occurrence of oscillations of limited spatial ex- 

tent and of long duration in a uniform medium are modified considerably 

by the presence of a magnetic field. 

of Landau damping are not changed essentially by the presence of a magnetic 

field although they are strengthened by the complete absence of Landau damp- 

ing for 0 = 90' (propagation in a direction normal to the magnetic field). 

The arguments about the spreading of a wave packet are, however, changed 

considerably by the anisotropic nature of the medium. In the absence of 

a magnetic field a wave packet was found to decay with almost monochromatic 

oscillations in the vicinity of the plasma frequency (subject to the condi- 

tion kh << 1). 

for small values of k, any single direction of the vector k corresponds to 

two frequencies. 

to these frequencies in the special case when the vector k is normal to 

the magnetic field. 

The arguments about the unimportance 

In the presence of a magnetic field Figure 2 shows that, 

- 
The harmonics of the cyclotron frequency must be added 

- 

The spreading of the wave packet formed by such Fourier components is 

again determined by the group velocity which, in an anisotropic medium, is 

given by aw/ak, that is, the gradient of the scalar quantity w in k-space. 

Figure 3a shows curves of constant q = w / u ~  in this space. The surfaces 

of constant q are obtained from these curves by rotation about the hori- 

zontal axis (parallel to the magnetic field). 

pendicular to these surfaces and is indirectly proportional to the 

- - 

The group velocity is per- 



- perpendicular distance between them. 

thus almost perpendicular t o  & for a l l  values of the angle 0 that  are not 

i n  the v ic in i ty  of 0 = 0 or 0 = n/2. 

For  kh e 1 the group velocity i s  

Figure 3a represents the  e lec t ros ta t ic  approximation of the disper- 

sion equation 15. 

r ad ia l  near the origin so tha t  a given frequency corresponds t o  a cer ta in  

angle between the wave normal and the magnetic f i e l d  (c . f .  equation 16). 

I n  r e a l i t y  the e lec t ros ta t ic  approximation breaks down close t o  the origin.  

The shape of the curves i n  t h i s  vicinity ( i . e .  well inside the small c i r c l e  

of Figure 3a) i s  shown by Figure 3b which represents the cold plasma ap- 

proximation and i s  based on the Appleton-Hartree equations [Ratcliffe,  

19591. 

i n  the paper; a t  present only the e lec t ros ta t ic  approximation w i l l  be con- 

sidered. 

It shows tha t  the curves of constant qbecome almost 

The significance of the curves of  Figure 3b w i l l  be discussed l a t e r  

I n  order t o  discuss the relaxation of osci l la t ions corresponding t o  

angles between 0 = 0 and 0 = n/2, it i s  necessary t o  carefully re-evaluate 

the quantity TG, t ha t  i s ,  the scale of the wave packet divided by the group 

velocity.  Since the constant-frequency curves are almost radial  fo r  t h i s  

case, the group velocity i s  approximately u = k''acu/& and it i s  directed 

almost perpendicular t o  k. 

packet i s  tha t  also perpendicular t o  k. The width of the spa t ia l  spectrum 

corresponding t o  a given angular width A0 i s  A k  = kA0 (the approximate 

range of the azimuthal component of 2). 
i s  &/kA0. 

sounding system, given by h = (aw/ae)A0. 

Therefore, the pertinent scale of the wave 

- 

Thus the scale of the wave packet 

The angular width i s  determined by the bandwidth 4u of the 

Therefore, 



In the case of Alouette this indicates that persistent oscillations should 

be observed no longer than the relaxation time of the receiver, also equal 

to &/&. 
The situation is different when the pass-band of the satellite includes 

a frequency corresponding to 8 = 0 or 8 = n/2. 

velocity is considerably smaller than in the intermediate case, and it is 

directed parallel to k. 

for Ak the same order as k. 

termediate case, the greatly reduced value of the group velocity (for suf- 

ficiently small k) ,  gives TG a considerably larger value and thus accounts 

for the persistence of oscillations at the limiting angles. As in the ab- 

sence of the magnetic field, this persistence can again by measured by T, 

the ratio of phase velocity to group velocity. 

large in the electrostatic approximation as k approaches zero. 

In these cases the group 

Once again the appropriate scale is given by 2rr/k - 
Although this scale is smaller than in the in- 

This ratio becomes infinitely 

Details of the derivations of aFproximate expressions for the relaxa- 

tion time T measured in cycles and for the angular range 8, of the Fourier 

components that form the slowly spreading wave packet, are given in the 

Appendix for the resonances near w = w, w = WH, w = 9 = (%2 + w ~ ~ ) ~ ,  

and w = % where n is an integer and n 2 2. The resulting expressions 

are given in Table I. Also given in Table I are the calculated fractional 

deviations df of the oscillations from the nominal frequency (without the 

sign). 

U)H resonance, for which df N 0.08 for T = 1000. 

1 

The table shows that this deviation is only significant for the 

For the other resonances 

16 
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I 
df < 0.01 for  T > LOO and therefore the frequency deviation i s  not l ike ly  

t o  exceed the observational error .  

not given since they form a straightforward extension of the analysis given 

i n  the Appendix. 

Details of the calculation of df are 

7 .  The Validity of the Electrostat ic  Approximation 

I n  the previous sections the equations of e lec t ros ta t ics  were used 

instead of the complete Maxwell equations. The errors  caused by tha t  ap- 

proximation can be estimated by using the quasi-hydrodynamic plasma equa- 

t ions (instead of the col l is ionless  Boltzmann equations) combined with the 

full Maxwell equations. 

ances a t  Lhe harmonics of the cyclotron frequency, should be quite r e a l i s t i c  

f o r  the other resonant frequencies. In a direction p a r a l l e l  t o  the magnetic 

f i e l d  the introduction of the full Maxwell equation causes no change i n  the 

r e su l t s  ; the "electrostatic" waves and the "electromagnetic" waves propa- 

gate quite independently i n  tha t  direction. 

"electrostat ic"  or  "plasma" wave i s  a continuation of one of the "electro- 

magnetic" magnetoionic modes. 

based on the Appleton-Hartree equations and represents the form of the 

curves of Figure 3a very close t o  the origin. Figure 3b shows tha t  the 

curves do not continue t o  approach the  origin radial ly  but turn t o  inter-  

sec t  the axis perpendicular t o  the magnetic f i e l d  (the 0 = rr/2 axis) .  

Such a procedure, although it ignores the reson- 

I n  a l l  other directions the 

T h i s  i s  i l l u s t r a t ed  by Figure 3b which i s  

The dispersion equation for  0 = n/2 i s  given expl ic i t ly  by Ginzburg 

[1961, equation 12.81 and can be used t o  derive T = v/u, the duration of 

resonant osci l la t ions,  measured i n  cycles. It i s  then found tha t  T does 



I . not increase indefini te ly  w i t h  decreasing k, as predicted by the electro- 

s t a t i c  approximation but reaches a maximum value given by 

If, therefore, WH and WN are of the same order of magnitude then the largest  
value 
of T i s  about equal t o  the r a t i o  of the velocity of l i gh t  c t o  the mean 

thermal velocity (- %) of the electrons. 

frequency, f r ,  a marked resonance i s  then only possible i f  the r a t i o  c/% 

i s  very large. 

always greater than 1000 and thus the hybrid resonmce i s  not inhibited and 

the e lec t ros ta t ic  approximation i s  probably satisfactory.  

This means tha t  a t  the hybrid 

I n  the plasma encountered by Alouette t h i s  r a t i o  i s  probably 

8. Physical Nature of the Oscillations and t h e i r  Excitation 

The theory of Section 6 i s  linear i n  i t s  nature. It may seem paradoxi- 

c a l  that a l inear  theory should predict osci l la t ions a t  harmonics of the cy- 

clotron frequency since harmonics are usually associated w i t h  non-linear 

processes. It must be realized tha t ,  although the osci l la t ions were con- 

sidered t o  be infinitesimally small, the thermal motion causes the electrons 

t o  gyrate with f i n i t e  cyclotron radi i .  

predict  any special  effects a t  the harmonics of the cyclotron frequency. 

These effects  depend on thermal motion. A bunching of the gyrating elec- 

t rons i s  caused by the alternating e lec t r ic  f i e l d  (normal t o  the magnetic 

f i e l d )  which i n  turn i s  caused by the  bunched gyrations. 

theory shows t h a t  self-consistent oscil lations of t h i s  type occur very near 

Indeed, cold plasma theory does not 

The present 



t o  the harmonics of the cyclotron frequency but t ha t  the frequency of the 

fundamental mode i s  approximately f T  and not f H .  It i s  close t o  the cy- 

clotron frequency only fo r  a very tenuous plasma. 

The present explanation of the oscil lations near the harmonics of the 

electron cyclotron frequency i s  no t  complete i n  the sense tha t  it only ex- 

plains the persistence of the oscil lations but not the mechanism of the i r  

generation. 

and Johnston and Nuttal 

c i l l a t ions  near the cyclotron harmonics without explaining t h e i r  persis-  

It d i f fe rs  i n  t h i s  respect from the work of Lockwood [l963] 

[1964] who t r i ed  t o  explain the generation of os- 

tence. Their suggested explanations o f  the generation process are,  however, 

only semi-quantitative and further work i s  required on the generation pro- 

cess. 

Further l i gh t  i s  thrown on the nature of the excitation process by 

the observation of a resonance a t  the frequency 2fT. It appears very l ike ly  

tha t  the actual  osci l la t ions i n  t h i s  case occur a t  the frequency fT, and 

tha t  the second harmonic 2fT i s  produced i n  the receiver. 

the medium a t  the frequency f T  can therefore apparently be excited by the 

Oscillations of 

transmitter even when it i s  tuned t o  a frequency 2fr or presumably t o  any 

other arbi t rary frequency, It thus would seem tha t  osci l la t ions of con- 

siderable amplitude are excited impulsively a t  frequencies different  from 

the frequency of the transmitter. The actual excitation process i s  pro- 

bably strongly non-linear and i s  not discussed here. 

Other workers [Warren and Nelms, 19641 described the Alouette reson- 

ances i n  terms of the cold plasma approximation (the Appleton-Hartree equa- 

t i ons ) .  I n  a sense such a description i s  not always essent ia l ly  different  



from the one given here since the electromagnetic waves in a cold plasma 

become almost longitudinal in the presence of an external magnetic field 

and a large refractive index. The waves are then really electrostatic in 

nature and it is essential to take the effects of thermal motion into ac- 

count to provide their f u l l  description. 

taken into account, then no lower limit is obtained for the wavelength of 

If the thermal motions are not 

lightly damped and long persistent oscillations. It was shown, however, 

in the present paper that the oscillations can only have long decay time 

if their waveJength greatly exceeds the Debye length; the exact conditions 

are given in Table I. Conditions of this type cannot be obtained from the 

Appleton-Hartree equations; theories based on them such as that of Warren 

and Nelms [I9641 and the calculations of antenna impedance in the presence 

of a magnetic field by Kaiser [1962] cannot therefore be used for the ex- 

planation of the Alouette resonances without bearing this limitation in 

mind. 

Nuttal [I9641 attempts to treat the excitation of the resonances at 

q and 9 in a quantitative manner. He uses first the cold plasma approx- 

imation and then the collisionless Boltzmann equation; he neglects sheath 

effects and thus is able to use linear theory. He does not, however, ob- 

tain detailed quantitative results that could be compared with the obser- 

vations. Further theoretical work, preferably with still more realistic 

assumptions, is clearly required. 

9. Comparison with Observations 

The most obvious agreement between the theory and the Alouette 
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I . observations i s  the agreement of the predicted w i t h  the observed frequen- 

I cies.  

between the observed strengths of the resonances and crude predictions 

Furthermore, as w i l l  be shown below, there i s  also general agreement 

I based on the present theory. 

Resonances are observed for  each of the frequencies predicted by the 

I theory. Furthermore, it i s  f e l t  tha t  a l l  other observed responses can be 
I 

at t r ibuted t o  auxiliary mechanisms. 

t o  occur a t  the following frequencies: 

l e s s  often, the harmonic of f N ;  

and (3) a t  random frequencies above the F layer penetration frequency. A s  

suggested ea r l i e r ,  the responses a t  2fT and 2 f N  (item 1) might be at t r ibu-  

ted  t o  impulsive excitation of osci l la t ions a t  the fundamental frequency 

by the 100 microsecond transmitter pulse, and then reception by harmonic 

These additional responses are found 

(1) the harmonic of fry and much 

(2) 1 Mc/s below predicted resonances; 

generation i n  the early broadband stages of the receiver. This, however, 

leaves unexplained the observation that 2fT i s  much more common than 2f". 

The image responses (item 2) have been adequately explained by Southern 

[private communication, 19641 as harmonic transmission followed by image 

reception i n  the second-IF c i rcu i t s  of the receiver. 

ses a t  random frequencies (item 3) ,  which have been found t o  occur most 

often over populated areas, are attr ibuted t o  interference by ground-based 

Finally, the respon- 

transmitting s ta t ions.  To our knowledge no other prominent resonances ap- 

pear on the Alouette ionograms although other points of view have been ex- 

pressed [Fi tzenrei ter  and Blumle, 19641. 

Agreement between the observed and the predicted strength of the re- 

sonances i s  more d i f f i c u l t  t o  establish. F i r s t  of a l l ,  theoret ical  
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predictions can, a t  t h e i r  best ,  only be rough estimates i n  the absence of 

a f u l l  theory of excitation and of antenna behavior. Secondly, the response 

of the receiver t o  input signals is  complicated, even a t  a single frequency, 

by the automatic volume control c i rcui t .  

quency dependent and f a l l s  off rapidly below about 1 Mc/s . 
I n  addition the response i s  f re-  

The duration of the response on the Alouette ionogram provides the 

most easily-obtained rough estimate f o r  the  observed strength of the re- 

sonances. 

only on the predicted relaxation time 2 m / w  but a lso on the angular range 

0, of the waves which form the slowly spreading wave packet. The quanti- 

t i e s  T and 8, are given by Table I for the different  resonances. 

neither of these two quantit ies nor any combination of them can be regarded 

as the predicted strength of a resonance-especially as the value of k i s  

unknown--certain conclusions can nevertheless be reached. 

it appears l ike ly  tha t  the smallest value of k tha t  i s  appreciably excited 

i s  somehow related t o  the largest  l inear dimension of the antenna. 

antennas as large as those on Alouette, the largest  appreciably-excited 

s p a t i a l  Fourier component corresponds t o  a value of kh probably smaller 

than 

Table I shows tha t  0, decreases w i t h  increasing T, it seems l ike ly  tha t  

the p rac t i ca l  limit on T i s  se t  by the minimum value of 9, t ha t  will pro- 

duce measurable osci l la t ions fo r  a given mode. For this  reason T i s  also 

given i n  Table I i n  terms of Om and %. The tab le  shows tha t  the expres- 

sion f o r  T i s  a product of separate functions of 8, and s ~ .  

hoc assumption tha t  8, i s  constant f o r  each of the resonances, the function 

This duration must depend (ignoring the excitation process) not 

While 

F i r s t  of a l l ,  

With 

This hardly se t s  a pract ical  l imit  on the value of 7. Since 

With the ad - 
- 
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a. 

I 

of q~ could be interpreted as the relat ive predicted duration i n  cycles 

fo r  each mode separately as qN varies with la t i tude .  

values of 0, are unknown, it i s  not possible t o  estimate the r a t io s  of 

However, since the 

strength between the different  modes. 

A special  study of the Alouette resonances was carried out f o r  com- 

parison w i t h  the functions of column three i n  the table.  In  t h i s  study, 

the duration of the resonances (the lengths on the record) were recorded 

and averaged fo r  each value of CQJ = q/%. These averages, with each point 

representing one t o  three dozen measurements, are presented i n  Figure 4, 

I n  order t o  indicate the spread in  the  data, f lags  were added which bracket 

the central  5% of the observations (the 25 and 75 percentile l imi t s ) .  

The dashed curves i n  these f i g u r e s  give the observational limits imposed by 

the weakest observable resonance (bottom) , off-scale resonances (top) , and 

the 1 Mc/s low-frequency l imit  of Alouette ( l e f t  or  r i gh t ) ,  Superimposed 

on the data points are the variations predicted i n  the table.  These curves 

have been registered ver t ica l ly  t o  obtain the best  agreement. 

Figures 4a and 4b f o r  fN and fH represent reasonable agreement with 

the theory and support i t s  most positive prediction. This i s  the inhibi- 

t i o n  of each of these two resonances a t  qN = 1. It i s ,  however, unfortu- 

nate that the 1 Mc/s lower threshold of Alouette (imposed by the Antenna- 

matching network) coincides w i t h  t h i s  condition and thus obscures i n  each 

case the recovery on the other side. 

show good agreement for values of % above 2. 

pancies for lower values (at higher la t i tudes)  i s  not known. 

f o r  3fH shows surprisingly good agreement throughout the range except fo r  

Figures 4c and 4d fo r  fT and 2 f H  

The source of the discre- 

Figure 4e 
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. the single point at qN = 3.05. 

with the theory. 

Finally, Figure 4f for 4fH represents agreement 
In all, the agreement with observations in Figure 4 is 

reasonably good in light of the ignored excitation mechanism and receiver 

response. 

10. Conclusions 

The resonances observed by the topside sounders may be attributed to 

electros-atic oscillation of the ionospheric plasma. This represents an 

extension of the interpretation of Calvert and Goe [l963] to include the 

cyclotron resonances. 

The resonant frequencies fN and fH correspond to oscillations approxi- 

mately along the ambient magnetic field; fT, 2fH, 3fH, etc., to oscilla- 

tions across the field. 

frequencies between fN and fT) do not persist for long in the vicinity of 

the sounder because their energy spreads more rapidly on account of their 

greater group velocity. 

The oscillations at intermediate angles (with 

Collisional damping is negligible in the topside ionosphere, as is 

Landau damping for hk < 0.1. 

laxation of the oscillations appears to be the spreading of energy by pro- 

pagation away from the sounder. A consideration of this mechanism in Sec- 

tion 6 led to the relaxation time, the angular tolerances, and the frequency 

tolerances shown in Table I for the various resonances. The expressions of 

Table I were used to estimate the resonance strengths and these estimates 

agreed resonably well with the Alouette observations where comparison was 

possible. 

The principal mechanism controlling the re- 

Both the theory and the observation will have to be improved 
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before a more detailed comparison canbe made. 
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APPENDIX 

Calculations of T and 8m f o r  the Different Resonances 

(a)  Oscillations near the plasma frequency fN: 8 - 0, q - Q 

Calculations of T and 8m f o r  the Different Resonances 

(a)  Oscillations near the plasma frequency fN: 8 - 0, q - Q 

For small values of h2k? and f o r  8 = 0, equation 15 may be shown t o  

be equivalent t o  equation 1 and therefore the r a t i o  of the phase velocity 

t o  the group velocity i s  given by 

T = V/U = (3h2k?)" 

j u s t  as i f  the magnetic f i e l d  were absent. An e lec t ros ta t ic  osci l la t ion 

a t  a frequency very close t o  the plasma frequency and with duration of 

about (3h2k2)O1 periods i s  therefore t o  be expected. 

sence of a magnetic f i e l d  a l l  Fourier components with wave numbers of order 

k were responsible for  the oscil lation, the magnetic f i e l d  r e s t r i c t s  the 

angular range of the vectors t o  a narrow cone whose axis l i e s  along the 

magnetic f i e ld .  

be roughly estimated as the angle where the group velocity obtained from 

(16) with the aid of the formula (derived from u = aw/ak) 

Whereas i n  the ab- 

The maximum angle 8, between k and the magnetic f i e l d  may - 

z - 

i s  approximately equal t o  3h2%, the  value of the group velocity i n  the 

absence of a magnetic f i e l d  given by equation 4. 

t h i s  manner i s  

The value obtained i n  
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This equation shows tha t  the resonant osci l la t ions are res t r ic ted  t o  

a re la t ive ly  narrow angle about the magnetic f i e l d  and tha t  the angle de- 

creases as the wavelength, and therefore the duration of the osci l la t ions,  

increases. 

cur when the plasma frequency i s  equal t o  the electron cyclotron frequency. 

The equation also shows that  no resonant osci l la t ions can oc- 

(b) Oscillations i n  the v ic in i ty  of  the cyclotron frequency f": 8 - 0 ,  q 

- 1  - 

It w i l l  be recalled tha t  equation 15, which predicts the resonance 

fo r  q -  1 a t  8 = 0, i s  invalid f o r  integral  values of q because the condi- 

t i on  (11) i s  not sa t i s f ied .  

i s  not c r i t i c a l )  then Landau damping becomes negligible and equation 15 be- 

comes applicable. 

s t i t u t e d  in to  the l imiting condition I q  - Il/lkpcosel = 8, and the resul t -  

If Iq - ll/lkpcosel exceeds about 8 ( this  value 

I f  the approximate value of q from equation 16 i s  sub- 

ing equation i s  solved f o r  8, then the expression 

i s  obtainel f o r  the angle ee ,  between k and the magnetic f i e l d ,  bAch has - 
t o  be exceeded fo r  negligible Landau damping. 

w, given i n  terms of equation 16 i s  approximately 

Since the angular frequency 



I the derivative &/de w i l l  not be constant over the receiver bandwidth which 

corresponds t o  an angle much larger than B e .  The arguments used f o r  an ar- 

b i t ra ry  angle 0 a t  the beginning of this  section cannot therefore be applied 

f o r  the t o t a l  receiver bandwidth, and the relaxation time of the osci l la t ions 

w i l l  be determined by tha t  group of waves between, say, 8, and3  0, fo r  which 

aw/& = 0w2/Iw2 - -2\ varies re la t ively l i t t l e .  

lar frequency band occupied by these waves i s  approximately k 2 8 , ” / 1 q 2  

- %21 and the duration of the osci l la t ions w i l l  be approximately the reci-  

procal of the frequency bandwidth. 

The width of the angu- 

I f  8, from (22) i s  substi tuted then 

i s  obtained f o r  the duration of the osci l la t ions,  expressed i n  cycles. If 

and % do not d i f f e r  greatly,  then equations 19 and 24 yield durations 

of the same order of magnitude. 

s ib le  f o r  the resonance i s  taken as 8, = 3e and i s  expressed i n  terms of 

T with the aid of equations 22 and 24 then the expression 

If the angular range of the waves respon- 

i s  obtained. 

It should be noted tha t  the angular range given by ( 2 5 ) ,  l ike  the an- 

gular range given by (21) ,  contracts t o  zero when the plasma frequency i s  

equal t o  the electron cyclotron frequency. 
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1 

. (e )  Oscil lations near the hybrid frequency fT: 0 - n/2, q - (1 + qm2)T 

The group veloci ty  for  these osci l la t ions may be found from equation 

15 a f t e r  the scbst i tut ion 0 = n/2. 

measured i n  periods, i s  

The r e su l t  for the  relaxation time, 

This equation becomes ident ica l  t o  (19 )  f o r  WH = 0. 

relaxation time of the  osci l la t ions becomes very short  i f  uq” - m’ or 

It i s  seen tha t  the 

2wH; the  same s i tuat ion would be found f o r  CUT = h, WT = ( W N  2 + CUH’)’ 

. . . if the more accurate equation 12 were used instead of (15).  

The approximate angular range 0, of the waves may be found by equat- 

ing the group veloci ty  given by equation 26 with tha t  obtained from the 

combination of equations 16 and 20. The resul t ing equation i s  

(d) Oscil lations a t  harmonics of the  electron cyclotron frequency nfH: 

e - n/2, q - n where n 2 2 i s  an integer 

Equation 15 i s  not d i rec t ly  applicable i n  t h i s  case but  i t s  terms not 

involving k can be retained if k’’p-2 times the m = -n term of  the sum i n  

equation 12  i s  added on the r ight  hand s ide of (15). For 0 - n / 2  the re- 

su l t i ng  equation i s  



I n  the special  case of 0 = rr/2 the f i r s t  term of the asympototic ex- 

pansion (13) may be used t o  obtain f rom equation 28 the re la t ion  

which has the solution 

1 
If k2p2 << 1 and the equation w ~ ~ / y g ~  = (n2 - 1)” , or  (w2 + u . ) ~ ~ ) ’  = 

n w ~ ,  i s  not nearly sa t i s f i ed  then q w i l l  be very nearly equal t o  n, as w a s  

assumed. 

equation 

Differentiation of ( 3 0 )  with respect t o  k then resu l t s  i n  the 

The angular range 0, may be determined from the l imiting condition 

(analogous t o  a similar condition used i n  Section b)  Iq - nl/lkpcos0I = 8; 

Landau damping w i n  then be suff ic ient ly  small f o r  angles smaller than 0, 

since condition (11) i s  sa t i s f i ed  f o r  these angles. 

of kp with the a id  of equation 31 the l imit ing expression takes the form 

After the elimination 
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1. 

2. 

3. 

CAPTIONS 

Alouette ionogram showing the various resonances. 

UT, April 7, 1963. 

The two resonance solutions q = W/WH of equation 16 as functions of 

the angle 8 between the wave normal and the magnetic field, for two 

different values of the parameter Q = q/q. 

Curves illustrating the surfaces of constant q = W/UQ in k-space for 

q~ = 1.25 (qT = 1.60). These curves are based on (a) the collision- 

less Boltzmann equation and the electrostatic approximation; and (b) 

the Appleton-Hartree equation. The latter illustrates the behavior 

near the origin. 

Recorded at 1437 

- 

4a. Alouette observations of the duration of the resonances at the reson- 

ant frequency fN. 

iations predicted in Table I, ~ ( 0 ~  = const, %), times constant fac- 

tors adjusted for best agreement. 

The solid curves give, as f'unctions of CQJ, the var- 

4b. Observations at fH. See figure 4a. 

4c. Observations at fT. See figure 4a. 

4d. Observations at 2fH. See figure 4a. 

4e. Observations at 3fH. See figure 4a. 

4f. Observations at 4fH. See figure 4a. 
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